TEMPERATURE- AND SUBSTITUENT-DEPENDENCE IN THE PHOTOSENSITIZED OXYGENATION OF N,N-DISUBSTITUTED HYDRAZONES.

Yoshikatsu Ito, Kazuaki Kyono, and Teruo Matsuura Department of Synthetic Chemistry, Faculty of Engineering, Kyoto University, Kyoto 606, Japan

Summary: Methylene blue-sensitized photooxidation of N,N-disubstituted hydrazones <u>la-f</u> gave various products <u>2-9</u>, depending on the reaction temperature and N-substituents. The major reaction modes from the photooxidation of N,N-diphenylhydrazones were α -oxidation at room temperature and C=N cleavage at -78 °C in contrast to C=N cleavage as an only reaction mode for the photooxidation of N,N-dimethylhydrazones at either room temperature or -78 °C.

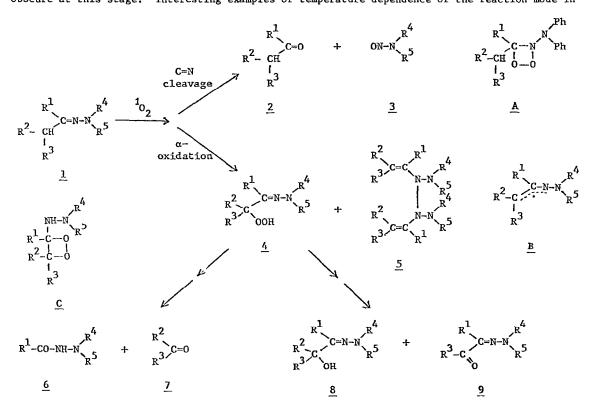
Despite that extensive studies have been focused on the chemistry of 1,2-dioxetanes in the last decade in connection with chemiluminescence and bioluminescence,² only little attention has been drawn to the chemistry of 1,2,3-dioxazetidines.³ In order to explore this field, we have been studying oxidation of imine derivatives with oxygen species, e.g.,oxidation of oxime ethers with singlet oxygen and ozone.⁴ The oxidation of N-substituted hydrazones having a general formula I with molecular oxygen (triplet or singlet) proceeds rapidly at room temperature to produce the azo-hydroperoxides II.⁵ Although N,N-disubstituted hydrazones are not reactive with

$$\begin{array}{c} \underset{R'}{\overset{R}{\longrightarrow}} C=N-NHR'' \xrightarrow{O_2} \underset{R'}{\overset{R}{\longrightarrow}} \underset{OOH}{\overset{C-N=N-R''}{\longrightarrow}} \end{array}$$

triplet oxygen, it was recently found that N,N-dimethylhydrazones of aliphatic ketones regenerated the parent ketones by the reaction with singlet oxygen.⁶ This report prompted us to report that the reaciton of N,N-disubstituted hydrazones $\underline{1}$ with singlet oxygen shows a unique dependence on substituents at the nitrogen atom and on the reaction temperature as well as on the solvent.

		Hydr	azor	ie <u>1</u>		Solvent	Température °C	Products (%)	
	R ¹	r ²	R ³	R ⁴	R ⁵			C=N cleavage	α-oxidation
a)	Me	Ph	Ph	Ph	Ph	^{CH} 2 ^{C1} 2	RT	-	4a(59), $5a(18)$, $6a(9)$,
									<u>7a</u> (15), <u>8a</u> (trace)
						сн ₂ с1 ₂	-78	<u>2a</u> (∿100), <u>3a</u> (72)	<u>6a</u> (trace), <u>7a</u> (trace)
))	Ph	Н	Pr	Ph	Ph	CH2C12	RT	-	<u>9b</u> (36)
						CH ₂ C1 ₂	-78	<u>2b(10), 3a(5)</u>	<u>9b</u> (30)
						CCI4	RT	-	<u>9b(65)</u>
						снзон	RT	<u>2b</u> (44)	<u>9b</u> (17)
						CH ₃ CN	RT	<u>2</u> b(27)	<u>9b</u> (27)
:)	Ph	H	Pr	Me	Ph	CH2C12	RT	~	<u>9c</u> (40)
I)	Ph	H	Pr	Me	Me	СН_С1_	RT	<u>2Ъ</u> (∿100)	-
						CH ₂ C1 ₂	-78	<u>2ь</u> (∿100)	-
)	Ph	H	Ph	Ph	Ph	CH ₂ C1 ₂	RT	<u>2e(trace)</u>	<u>9e</u> (32)
						сн,с1,	-78 ^a	-	-
)	Ph	Me	Me	Ph	Ph	сн,с1,	RT	-	<u>4f(trace), 6f(15), 8f(6</u>
						CH ₂ C1 ₂	-78	<u>2f</u> (70), <u>3a</u> (56)	-

Table I. Products from the Photosensitized Oxygenation of N,N-Disubstituted Hydrazones $\underline{1a-f}$.


^aThe reaction was very slow at -78 $^{\circ}$ C.

Methylene blue-sensitized photooxidation of the hydrazones $\underline{1a} - \underline{f}$ in CH_2Cl_2 solution at either room temperature (RT) or low temperature (-78 °C) yielded various products $\underline{2-9}$ (Table I).⁷ The effect of solvent (CCl₄, CH₃OH and CH₃CN) on the photooxidation of $\underline{1b}$ was also studied. As was found previously,⁶ the N,N-dimethylhydrazone of valerophenone $\underline{1d}$ gave the parent ketone, valerophenone $\underline{2b}$, quantitatively in CH_2Cl_2 solution.⁸ In sharp contrast, N-phenyl-substituted hydrazones were photooxidized in CH_2Cl_2 solution at room temperature to afford α -oxidation products ($\underline{1a} + \underline{4a} - \underline{8a}$, $\underline{1b} + \underline{9b}$, $\underline{1c} + \underline{9c}$, $\underline{1e} + \underline{9e}$, and $\underline{1f} + \underline{4f} + \underline{6f} + \underline{8f}$)⁹ instead of the parent ketones $\underline{2}$. However, at -78 °C these hydrazones underwent carbon-nitrogen double-bond cleavage to afford the corresponding parent ketones $\underline{2}$ and N-nitrosodiphenylamine $\underline{3a}$ ($\underline{1a} + \underline{2a} + \underline{3a}$, $\underline{1b} + \underline{2b} + \underline{3a}$, and $\underline{1f} + 2f + \underline{3a}$). It should be noted that the course of photooxidation of N,N-diphenylhydrazones of 1,1-diphenylacetone ($\underline{1a}$) and isobutyrophenone ($\underline{1f}$) was completely altered by this temperature change. Photooxidation of $\underline{1b}$ in polar solvents (CH_3 OH and CH_3CN) at room temperature gave substantial amounts of the parent ketone $\underline{2b}$ in addition to the α -oxidation product $\underline{9b}$.

Since the parent ketone $\underline{2}$ and N-nitrosodiphenylamine $\underline{3a}$ were formed in comparable yields in the photooxidation of the N,N-diphenylhydrazones at -78 °C (Table I) in contrast to the failure of detection of N-nitrosodimethylamine in the case of N,N-dimethylhydrazones,⁶ a dioxazetidine <u>A</u> seems to be the best candidate for the intermediate. The photooxidation mixture of <u>la</u> at -78 °C was chemiluminescent (λ_{max} 530 nm) during warming-up to RT. It also seems that <u>4</u> and <u>5</u> were formed via a common precursor, e.g., a radical <u>B</u>. We feel that an electron transfer from the hydrazones <u>l</u> to singlet oxygen is the primary step for the production of <u>B</u> like that for photooxidation of amines.¹⁰ The hydroperoxide <u>4a</u> was significantly chemiluminescent above 50 °C with an added fluorescer (DBA, perylene and rubrene), and the emission spectra agreed with the fluorescence spectra of the added fluorescers.¹¹ <u>4a</u> decomposed slowly at 50-55 °C in CDCl₃ to give both <u>6a</u> and <u>7a</u> quantitatively. Possibly a dioxetane <u>C</u> is an intermediate for this transformation. A similar transformation has been reported with Schiff bases.¹²

The involvement of singlet oxygen in the photooxidation of these hydrazones was supported by the efficient quenching of the reaction with DABCO¹³ (0.01 M) and by the fact that these hydrazones were oxidized in an analogous way with triphenyl phosphite ozonide¹⁴ at -15 - 0 °C in CH_2Cl_2 , e.g., $\underline{la} \rightarrow \underline{4a}(80\%) + \underline{5a}(8\%) + \underline{6a}(5\%) + \underline{7a}(5\%)$ and $\underline{1d} \rightarrow \underline{2b}(96\%)$.

The exact nature of the temperature- and substituent-dependence in the present reaction is obscure at this stage. Interesting examples of temperature dependence of the reaction mode in

certain singlet-oxygen reactions have recently been reported.¹⁵

Acknowledgment. This work was supported by a Grant-in-Aid for Scientifc Research from the Ministry of Education of Japan.

References and Footnotes

- 1. Photoinduced Reactions, Part 111.
- 2. K. A. Horn, J. Koo, S. P. Schmidt, and G. B. Schuster, Mol. Photochem., 9, 1 (1978-79).
- 3. C. C. Wamser and J. W. Herring, J. Org. Chem., 41, 1476 (1976).
- 4. Y. Ito, M. Konishi, and Teruo Matsuura, Photochem. Photobiol., in press.
- G. E. Lewis and G. L. Spencer, Aust. J. Chem., <u>28</u>, 1733 (1975), and references cited therein; M. Schulz and L. Somogyi, Angew. Chem., <u>79</u>, 145 (1967); H. C. Yao and P. Resnick, J. Org. Chem., <u>30</u>, 2832 (1965); J. Griffiths and C.Hawkins, J. Chem. Soc. Perkin II, 747 (1977); A review, V. Karnojitzky, Russ, Chem. Rev., <u>46</u>, 121 (1977).
- 6. E. Friedrich, W. Lutz, H. Eichenauer, and D. Enders, Synthesis, 893 (1977).
- 7. Irradiations were carried out with a tungsten-bromine lamp through a filter solution of 5 % potassium dichromate (>520 nm). In some cases photooxidations were also done with tetraphenylporphine, but the results were not altered. The hydrazones were prepared by a standard procedure from the corresponding ketones and hydrazines. Products were isolated by chromatographic methods and their structures were determined by NMR (¹H and ¹³C), IR and Mass spectra. All new compounds gave satisfactory elemental analyses except <u>4f</u> and <u>8f</u>. The hydroperoxide <u>4f</u> and the alcohol <u>8f</u> were unstable to work-up procedures and their isolation in pure states has been unsuccessful yet.
- As previously reported,⁶ we could not detect N-nitrosodimethylamine <u>3d</u> in the reaction mixture (GLC and NMR analyses). We found that <u>3d</u> was stable under our photooxidation conditions.
- 9. The hydroperoxide <u>4a</u> decomposed into <u>6a</u> and <u>7a</u> on silica gel or by heating its solution above room temperature. It also decomposed slowly under the present photooxidation conditions to afford 5a(25 %), <u>6a(61 %)</u>, <u>7a(61 %)</u> and <u>8a(9 %)</u>. On treatment with triphenyl-phosphine, <u>4a</u> was quantitatively transformed into the alcohol <u>8a</u>. The isolation of <u>4a</u> was done by low-temperature column chromatography (-70 °C) on silica gel, mp. >110 °C (decomp).
- 10. B. Ranby and J. F. Rabek (Ed.), "Singlet Oxygen", Wiley, New York (1978).
- 11. The decay of the chemiluminescence was first order with $k=3.4 \times 10^{-5} s^{-1}$ at 90 °C in xylene $(4a, 2.4 \times 10^{-4} M; \text{ perylene, } 1 \times 10^{-2} M)$ and the chemiluminescence quantum yield was approximately 5×10^{-5} Einsteins/mole under these conditions. Luminol was used as a standard of photon emission.
- 12. F. McCapra and A. Burford, J. C. S. Chem. Comm., 607 (1976).
- 13. C. Quannes and T. Wilson, J. Am. Chem. Soc., <u>90</u>, 6527 (1968).
- 14. R. W. Murray and M. L. Kaplan, J. Am. Chem. Soc., <u>91</u>, 5358 (1969).
- I. Saito, M. Imuta, Y. Takahashi, S. Matsugo and T. Matsuura, J. Am. Chem. Soc., <u>99</u>, 2005 (1977); M. Nakagawa, H. Okajima and T. Hino, J. Am. Chem. Soc., <u>99</u>, 4424 (1977); W. Ando, K. Watanabe, J. Suzuki, T. Migita, J. Am. Chem. Soc., <u>96</u>, 6766 (1974); H. Takeshita and T. Hatsui, J. Org. Chem., <u>43</u>, 3080 (1978).

(Received in Japan 9 March 1979)